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A direct link between the quantum-mechanical and
semiclassical determination of scattering resonances

Andreas Wirzba† and Michael Henseler‡
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Darmstadt, Germany
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Abstract. We investigate the scattering of a point particle fromn non-overlapping,
disconnected hard disks which are fixed in the two-dimensional plane and study the connection
between the spectral properties of the quantum-mechanical scattering matrix and its semiclassical
equivalent based on the semiclassical zeta function of Gutzwiller and Voros. We rewrite the
determinant of the scattering matrix in such a way that it separates into the product ofn

determinants of one-disk scattering matrices—representing the incoherent part of the scattering
from then-disk system—and the ratio of two mutually complex conjugate determinants of the
genuine multi-scattering kernel,M, which is of Korringa–Kohn–Rostoker-type and represents
the coherent multi-disk aspect of then-disk scattering. Our result is well defined at every step
of the calculation, as the on-shellT-matrix and the kernelM−1 are shown to be trace-class. We
stress that the cumulant expansion (whichdefinesthe determinant over an infinite, but trace-class
matrix) induces the curvature regularization scheme to the Gutzwiller–Voros zeta function and
thus leads to a new, well defined and direct derivation of the semiclassical spectral function.
We show that unitarity is preserved even at the semiclassical level.

1. Introduction

In scattering problems whose classical analogue is completely hyperbolic or even chaotic,
as for examplen-disk scattering systems, the connection between the spectral properties of
exact quantum mechanics and semiclassics has been rather indirect in the past. Mainly the
resonance predictions of exact and semiclassical calculations have been compared, which of
course still is a useful exercise, but does not fully capture the rich structure of the problem.
As shown in [1], there exist several semiclassical spectral functions which predict the very
same leading resonances but give different results for the phase shifts. Similar results are
known for bound systems, see [2, 3]: the comparison of the analytic structure of the pertinent
spectral determinant with various semiclassical zeta functions furnishes the possibility of
making much more discriminating tests of the semiclassical approximation than the mere
comparison of exact eigenvalues with the corresponding semiclassical predictions.

In the exact quantum-mechanical calculations the resonance poles are extracted from
the zeros of a characteristic scattering determinant (see e.g. [4]), whereas the semiclassical
predictions follow from the zeros (poles) of a semiclassical spectral determinant (trace)
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of Gutzwiller [5] and Voros [6]. These semiclassical quantities have either beenformally
(i.e. without induced regularization prescription) taken over from bounded problems (where
the semiclassical reduction is performed via the spectral density) [7, 8] or they have been
extrapolated from the correspondingclassical scattering determinant [9, 10]. Here, our
aim is to construct adirect link between the quantum-mechanical and the semiclassical
treatment of hyperbolic scattering in a concrete context, then-disk repellers. The latter
belong to the simplest realizations of hyperbolic or even chaotic scattering problems, since
they have the structure of a quantum billiard—without any confining (outer) walls. Special
emphasis is given to a well defined quantum-mechanical starting point which allows for the
semiclassical reductionincluding the appropriate regularization prescription. In this context
the word ‘direct’ refers to a link which is not offormal nature, but includes a proper
regularization prescription which isinherited from quantum mechanics, and notimposed
from the outside by hand.

The n-disk problem consists in the scattering of a scalar point particle fromn > 1
circular, non-overlapping, disconnected hard disks which are fixed in the two-dimensional
plane. Following the methods of Gaspard and Rice [4] we construct the pertinent on-shell
T-matrix which splits into the product of three matricesC(k)M−1(k)D(k). The matrices
C(k) and D(k) couple the incoming and outgoing scattering wave (of wavenumberk),
respectively, toone of the disks, whereas the matrixM(k) parametrizes the scattering
interior, i.e. themulti-scatteringevolution in the multi-disk geometry. The understanding
is that the resonance poles of then > 1 disk problem can only result from the zeros
of the characteristic determinant detM(k); see the quantum mechanical construction of
Gaspard and Rice [4] for the three-disk scattering system [11–14]. Their work relates to
Berry’s application [15, 16] of the Korringa–Kohn–Rostoker (KKR) method [17] to the
(infinite) two-dimensional Sinai-billiard problem which in turn is based on Lloyd’s multiple
scattering method [18, 19] for a finite cluster of non-overlapping muffin-tin potentials in
three dimensions.

On the semiclassical side, the geometrical primitive periodic orbits (labelled by
p) are summed up—including repeats (labelled byr)—in the Gutzwiller–Voros zeta
function [5, 6, 9]

ZGV(z; k) = exp

{
−
∑
p

∞∑
r=1

1

r

(znp tp(k))
r

1− (1/3r
p)

}
(1.1)

=
∏
p

∞∏
j=0

(
1− z

np tp(k)

3p
j

)
(1.2)

where tp(k) = eikLp−iνpπ/2/
√|3p| is the so-calledpth cycle, np is its topological length

and z is a book-keeping variable for keeping track of the topological order. The input
is purely geometrical, i.e. the lengthsLp, the Maslov indicesνp and the stabilities (the
leading eigenvalues of the stability matrices)3p of thepth primitive periodic orbits. Note
that both expressions for the Gutzwiller–Voros zeta function, the original one (1.1) and
the reformulation in terms of an infinite product (1.2), are purely formal. In general, they
may not exist without regularization. (An exception is the non-chaotic two-disk system,
since it has only one periodic orbit,t0(k) [20].) Therefore, the semiclassical resonance
poles are normally computed fromZGV(z = 1; k) in the (by hand imposed) curvature
expansion [8, 9, 21] up to a given topological lengthm. This procedure corresponds to a
Taylor expansion ofZGV(z; k) in z aroundz = 0 up to orderzm (with z taken to be one at
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the end):

ZGV(z; k) = z0− z
∑
np=1

tp

1− (1/3p) (1.3)

−z
2

2

{∑
np=2

2tp
1− (1/3p) +

∑
np=1

(tp)
2

1− (1/3p)2

−
∑
np=1

∑
np′=1

tp

1− (1/3p)
tp′

1− (1/3p′)
}
+ · · · . (1.4)

This is one way of regularizing the formal expression of the Gutzwiller–Voros zeta function
(1.1). The hope is that the limitm → ∞ exists—at least in the semiclassical regime
Rek � 1/a wherea is the characteristic length of the scattering potential. We will show
later that in the quantum-mechanical analogue—the cumulant expansion—this limit can be
taken.

As mentioned at the beginning of this paper, the connection between quantum mechanics
and semiclassics for these scattering problems has been the comparison of the corresponding
resonance poles, the zeros of the characteristic determinant on the one hand and the zeros of
the Gutzwiller–Voros zeta function—in general in the curvature expansion—on the other. In
the literature (see e.g. [7, 8, 13] based on [22, 23]) this link is motivated by the semiclassical
limit of the left-hand sides of the Krein–Friedel–Lloyd sum for the (integrated) spectral
density [24, 25] and [18, 19]

lim
ε→+0

lim
b→∞

(N(n)(k + iε; b)−N(0)(k + iε; b)) = 1

2π
Im Tr ln S(k) (1.5)

lim
ε→+0

lim
b→∞

(ρ(n)(k + iε; b)− ρ(0)(k + iε; b)) = 1

2π
Im Tr

d

dk
ln S(k). (1.6)

See also [26] for a modern discussion of the Krein–Friedel–Lloyd formula and [23, 27] for
the connection of (1.6) to the Wigner time delay. In this way the scattering problem is
replaced by the difference of two bounded circular reference billiards of the same radiusb

which will eventually be taken to infinity, where one contains in its interior the scattering
configuration and the other one is empty. Here,ρ(n)(k; b) (N(n)(k; b)) and ρ(0)(k; b)
(N(0)(k; b)) are the spectral densities (integrated spectral densities) in the presence or
absence of the scatterers, respectively. In the semiclassical limit, they will be replaced by
a smooth Weyl term and an oscillating periodic orbit sum. Note that the above expressions
only make sense for wavenumbersk above the real axis. In particular, ifk is chosen
to be real,ε must be greater than zero. Otherwise, the exact left-hand sides would give
discontinuous staircase or delta functions, respectively, whereas the right-hand sides are by
definition continuous functions ofk. Thus, the order of the two limits in (1.5) and (1.6) is
important, see, for example Balian and Bloch [22] who stress that smoothed level densities
should be inserted into the Friedel sums.

We stress that these links are ofindirect nature, since unregulated expressions for the
semiclassical Gutzwiller trace formula forboundsystems arise on the left-hand sides of the
(integrated) Krein–Friedel–Lloyd sums in the semiclassical reduction. Neither the curvature
regularization scheme nor other constraints on the periodic orbit sum follow from this in
a natural way. Since the indirect link of (1.5) and (1.6) is made with the help of bound
systems, the question might arise, for instance, whether in scattering systems the Gutzwiller–
Voros zeta function should be resummed according to Berry and Keating [28] or not. This
question is answered by the presence of the iε term and the second limit. The wavenumber
is shifted by the iε term from the real axis into the upper complexk-plane. This corresponds
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to a ‘de-hermitezation’ of the underlying Hamiltonian. The Berry–Keating resummation,
which explicitly makes use of the reality of the eigenenergies of abound system, does
not apply here. The necessity of+iε in the semiclassical calculation can be understood
by purely phenomenological considerations: without the+iε term there is no reason why
one should be able to neglect spurious periodic orbits which solely exist because of the
introduction of the confining boundary. The subtraction of the second (empty) reference
system helps just in the removal of those spurious periodic orbits which never encounter
the scattering region. The ones that do so would still survive the first limitb→∞, if they
were not damped out by the+iε term.

The expression for the integrated spectral densities is further complicated by the fact
that theε-limit and the integration do not commute either. As a consequence there appears
on the left-hand side of (1.5) an (in general) undetermined integration constant.

Independently of this comparison via the Krein–Friedel–Lloyd sums, it was shown in
[20] that the characteristic determinant detM(k) = det(1+ A(k)) can be re-arranged via
eTr ln(1+A(k)) in a cumulant expansion and that the semiclassical analogues to the first traces,
Tr (Am(k)) (m = 1, 2, 3, . . .), contain (including creeping periodic orbits) the sums of all
periodic orbits (with and without repeats) of total topological lengthm. Thus (1.4) should
be directly compared with its quantum analogue, the cumulant expansion

det(1+ zA) = 1− (−z)Tr[A(k)] − z
2

2
{Tr[A2(k)] − [Tr A(k)]2} + · · · . (1.7)

The knowledge of the traces is sufficient to organize the cumulant expansion of the
determinant

det(1+ zA) =
∞∑
m=0

zmcm(A) (1.8)

(with c0(A) ≡ 1) in terms of a recursion relation for the cumulants (see the discussion of
the Plemelj–Smithies formula in the appendix)

cm(A) = 1

m

m∑
k=1

(−1)k+1cm−k(A)Tr(Ak) for m > 1. (1.9)

In the second paper of [20] the geometrical semiclassical analogues to the first
three traces were explicitly constructed for the two-disk problem. The so-constructed
geometrical terms correspond exactly (including all prefactors, Maslov indices, and
symmetry reductions) to the once, twice or three times repeated periodic orbit that is
spanned by the two disks. (Note that the two-disk system has only one classical periodic
orbit.) In the meantime, one of us has shown that, with the help of Watson resummation
techniques [29, 30] and by complete induction, the semiclassical reduction of the quantum
mechanical traces of any non-overlapping 26 n < ∞ disk system (where in addition
grazing or penumbra orbits [31, 32] have to be avoided in order to guarantee unique isolated
saddle-point contributions) reads as follows [33],

(−1)m Tr (Am(k))
s.c.−→

∑
p

∑
r>0

δm,rnpnp
tp(k)

r

1− (1/3p)r + diffractive creeping orbits (1.10)

where tp are periodic orbits of topological lengthnp with r repeats. The semiclassical
reduction (1.10) holds of course only in the case that Rek is big enough compared with the
inverse of the smallest length scale. Note that (1.10) does not imply that the semiclassical
limit k → ∞ and the cumulant limitm → ∞ commute in general, i.e. that the curvature
expansion exists. The factornp results from the count of the cyclic permutations of a
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‘symbolic word’ of lengthnp which all label the same primary periodic orbittp. As the
leading semiclassical approximation to Tr(Am(k)) is based on the replacement of them
sums bym integrals which are then evaluated according to the saddle-point approximation,
the qualitative structure of the right-hand side of (1.10) is expected. The non-trivial points
are the weights, the phases, and the pruning of ghost orbits which according to [33] follows
the scheme presented in [15]. In [34–36] ¯h-corrections to the geometrical periodic orbits
were constructed, whereas the authors of [37] extended the Gutzwiller–Voros zeta function
to include diffractive creeping periodic orbits as well.

By inserting the semiclassical approximation (1.10) of the traces into the exact recursion
relation (1.9), one can find a compact expression of the curvature-regularized version of the
Gutzwiller–Voros zeta function [8, 9, 21]:

ZGV(z; k) =
∞∑
m=0

zmcm(s.c.) (1.11)

(with c0(s.c.) ≡ 1), where the curvature termscm(s.c.) satisfy the semiclassical recursion
relation

cm(s.c.) = − 1

m

m∑
k=1

cm−k(s.c.)
∑
p

∑
r>0

δk,rnpnp
tp(k)

r

1− (1/3p)r for m > 1. (1.12)

In the following, we construct explicitly adirect link between the full quantum-
mechanicalS-matrix and the Gutzwiller–Voros zeta function in the particular case ofn-disk
scattering. We will show thatall necessary steps in the quantum-mechanical description
are justified. It is demonstrated that the spectral determinant of then-disk problem splits
uniquely into a product ofn incoherent one-disk terms and one coherent genuine multi-disk
term which under suitable symmetries separates into distinct symmetry classes. Thus, we
have found a well defined starting point for the semiclassical reduction. Since theT-matrix
and the matrixA ≡ M − 1 are trace class matrices (i.e. the sum of the diagonal matrix
elements is absolutely converging in any orthonormal basis), the corresponding determinants
of the n-disk and one-diskS-matrices and the characteristic matrixM are guaranteed to
exist although they are infinite matrices. The cumulant expansion defines the characteristic
determinant and guarantees a finite, unambiguous result. As the semiclassical limit is taken,
the defining quantum-mechanical cumulant expansion reduces to the curvature-expansion
regularization of the semiclassical spectral function. It will also be shown that unitarity is
preserved at the semiclassical level under the precondition that the curvature sum converges
or is suitably truncated. In the appendix the trace-class properties of all matrices entering
the expression for then-disk S-matrix will be shown explicitly.

2. Direct link

If one is only interested in spectral properties (i.e. in resonances and not in wavefunctions) it
is sufficient to construct the determinant, detS, of the scattering matrixS. The determinant is
invariant under any change of a complete basis representing theS-matrix. (The determinant
of S is therefore also independent of the coordinate system.)

For any non-overlapping system ofn-disks (which may even have different sizes, i.e.
different disk radii: aj , j = 1, . . . , n) the S-matrix can be split up in the following way
[38] using the methods and notation of Gaspard and Rice [4] (see also [19]):

S(n)mm′(k) = δmm′ − iCj

ml(k){M−1(k)}jj ′ll′ Dj ′
l′m′(k) (2.1)
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wherej, j ′ = 1, . . . , n (with n finite) label the (n) different disks and the quantum numbers
−∞ < m,m′, l, l′ < +∞ refer to a complete set of spherical eigenfunctions,{|m〉}, with
respect to the origin of the two-dimensional plane (repeated indices are, of course, summed
over). The matricesC and D can be found in Gaspard and Rice [4]; they depend on the
origin and orientation of the global coordinate system of the two-dimensional plane and are
separable in the disk indexj . They parametrize the coupling of the incoming and outgoing
scattering wave, respectively, to thej th disk and describe, therefore, the single-disk aspects
of the scattering of a point particle from then disks:

Cj

ml =
2i

πaj

Jm−l(kRj )

H
(1)
l (kaj )

eim8Rj (2.2)

Dj ′
l′m′ = −πaj ′Jm′−l′(kRj ′)Jl′(kaj ′) e−im′8R

j ′ . (2.3)

HereRj and8Rj denote the distance and angle, respectively, of the ray from the origin in
the two-dimensional plane to the centre of the diskj as measured in the global coordinate
system.H(1)

l (kr) is the ordinary Hankel function of first kind andJl(kr) the corresponding
ordinary Bessel function. The matrixM is the genuine multi-disk ‘scattering’ matrix with
eliminated single-disk properties (in the pure one-disk scattering caseM becomes just the
identity matrix) [38]:

Mjj ′
ll′ = δjj ′δll′ + (1− δjj ′)

aj

aj ′

Jl(kaj )

H
(1)
l′ (kaj ′)

H
(1)
l−l′(kRjj ′)0jj ′(l, l

′). (2.4)

It has the structure of a KKR matrix (see [15, 16, 19]) and is the generalization of the
result of Gaspard and Rice [4] for the equilateral three-disk system to a generaln-disk
configuration where the disks can havedifferent sizes. Here,Rjj ′ is the separation between
the centres of thej th andj ′th disk andRjj ′ = Rj ′j . The matrix0jj ′(l, l′) = ei(lαj ′j−l′(αjj ′−π))

contains—besides a phase factor—the angleαj ′j of the ray from the centre of diskj to the
centre of diskj ′ as measured in the local (body-fixed) coordinate system of diskj . Note
that 0jj ′(l, l′) = (−1)l−l

′
(0j ′j (l

′, l))∗. The Gaspard and Rice prefactors, i.e.(πa/2i), of
M are rescaled intoC and D. The productCM−1D corresponds to the three-dimensional
result of Lloyd and Smith for the on-shellT-matrix of a finite cluster of non-overlapping
muffin-tin potentials. The expressions of Lloyd and Smith (see (98) of [19] and also Berry’s
form [15]) at first sight seem to look simpler than ours and the ones of [4] for the three-disk
system, as, for example, inM the asymmetric termajJl(kaj )/aj ′H

(1)
l′ (kaj ′) is replaced by

a symmetric combination,Jl(kaj )/H
(1)
l (kaj ). This form, however, is not of trace-class.

Thus, manipulations which are allowed within our description are not necessarily allowed
in Berry’s and Lloyd’s formulation. After aformal rearrangement of our matrices we can
derive the result of Berry and Lloyd. Note, however, that the trace-class property ofM is
lost in this formal manipulation, such that the infinite determinant and the corresponding
cumulant expansion converge only conditionally, and not absolutely as in our case.

The l-labelled matricesS(n) − 1, C and D as well as the{l, j}-labelled matrixM − 1
are of ‘trace-class’ (see the appendix for the proofs). A matrix is called ‘trace-class’,
if, independently of the choice of the orthonormal basis, the sum of the diagonal matrix
elements converges absolutely; it is called ‘Hilbert–Schmidt’ if the sum of the absolute
squared diagonal matrix elements converges, see the appendix and Reed and Simon [39, 40]
for the definitions and properties of trace-class and Hilbert–Schmidt matrices. Here, we
will list only the most important ones: (i) any trace-class matrix can be represented as the
product of two Hilbert–Schmidt matrices and any such product is trace-class; (ii) the linear
combination of a finite number of trace-class matrices is again trace-class; (iii) the hermitean-
conjugate of a trace-class matrix is again trace-class; (iv) the product of two Hilbert–Schmidt
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matrices or of a trace-class and a bounded matrix is trace-class and commutes under the
trace; (v) if B is trace-class, the determinant det(1+ zB) exists and is an entire function of
z; (vi) the determinant is invariant under unitary transformations. Therefore, for all fixed
values ofk (except atk 6 0 (the branch cut of the Hankel functions) and the countable
isolated zeros ofH(1)

m (kaj ) and of DetM(k)) the following operations are mathematically
allowed:

detS(n) = det(1− iCM−1D) = exp tr ln(1− iCM−1D)

= exp

{
−
∞∑
N=1

iN

N
tr[(CM−1D)N ]

}
= exp

{
−
∞∑
N=1

iN

N
Tr[(M−1DC)N ]

}
= exp Tr ln(1− iM−1DC) = Det(1− iM−1DC)

= Det [M−1(M− iDC)]

= Det(M− iDC)
Det(M)

. (2.5)

In fact,

det(1+ µA) = exp

{
−
∞∑
N=1

(−µ)N
N

tr[AN ]

}
is only valid for |µmaxλi | < 1 whereλi is the ith eigenvalue ofA. The determinant
is directly defined through its cumulant expansion (see equation (188) of [40]) which is
therefore the analytical continuation of the etr log representation. Thus the etr log notation
should be understood here as a compact abbreviation for the defining cumulant expansion.
The capital indexL is a multi-indexL = (l, j). On the left-hand side of (2.5) the
determinant and traces are only taken over smalll, on the right-hand side they are taken
over multi-indicesL = (l, j) (we will use the following convention: det. . . and tr. . . refer
to the |m〉 space, Det. . . and Tr. . . refer to the multi-spaces). The corresponding complete
basis is now{|L〉} = {|m; j〉} which now refers to the origin of thej th disk (for fixedj of
course) and not to the origin of the two-dimensional plane any longer. In deriving (2.5) the
following facts have been used:

(a) Dj ,Cj—if their index j is kept fixed—are of trace-class (see the appendix),
(b) and therefore the productDC—now in the multi-space{|L〉}—is of trace-class as

long asn is finite (see property (ii));
(c) M− 1 is of trace-class (see the appendix). Thus the determinant DetM(k) exists.
(d) M is bounded, since it is the sum of a bounded and a trace-class matrix.
(e) M is invertible everywhere where DetM(k) is defined (which excludes a countable

number of zeros of the Hankel functionsH(1)
m (kaj ) and the negative realk-axis, since there

is a branch cut) and non-zero (which excludes a countable number of isolated points in the
lower k-plane)—see the appendix for these properties. Therefore, and because of (d), the
matrix M−1 is bounded.

(f) CM−1D, M−1DC are all of trace-class, since they are the product of bounded times
trace-class matrices, and tr [(CM−1D)N ] = Tr [(M−1DC)N ], because such products have the
cyclic permutation property under the trace (see properties (ii) and (iv)).

(g) M − i DC − 1 is of trace-class because of the rule that the sum of two trace-class
matrices is again trace-class (see property (ii)).
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Thus all the traces and determinants appearing in (2.5) are well defined, except at the
above-mentionedk values. Note that in the{|m; j〉} basis the trace ofM − 1 vanishes
trivially because of theδjj ′ terms in (2.4). This does not prove the trace-class property
of M − 1, since the finiteness (here vanishing) of Tr(M − 1) has to be shown for every
complete orthonormal basis. After symmetry reduction (see later) Tr(M−1), calculated for
any irreducible representation, does not vanish any longer. However, the sum of the traces
of all irreducible representations weighted by their pertinent degeneracies still vanishes of
course. Semiclassically, this corresponds to the fact that only in the fundamental domain
can there exist one-letter ‘symbolic words’.

Now, the computation of the determinant of theS-matrix is very much simplified in
comparison with the original formulation, since the last term of (2.5) is completely written
in terms of closed-form expressions and no longer involvesM−1. Furthermore, using the
notation of Gaspard and Rice [4], one can easily construct

Mjj ′
ll′ − iDj

lm′C
j ′
m′l′ = δjj ′δll′

(
− H

(2)
l′ (kaj ′)

H
(1)
l′ (kaj ′)

)
− (1− δjj ′) aj

aj ′

Jl(kaj )

H
(1)
l′ (kaj ′)

H
(2)
l−l′(kRjj ′)0jj ′(l, l

′)

(2.6)

whereH(2)
m (kr) is the Hankel function of the second kind. Note that{H(2)

m (z)}∗ = H(1)
m (z∗).

The scattering from a single disk is a separable problem and theS-matrix for the one-disk
problem with the centre at the origin reads

S(1)ll′ (ka) = −
H
(2)
l (ka)

H
(1)
l (ka)

δll′ . (2.7)

This can be seen by comparison of the general asymptotic expression for the wavefunction
with the exact solution for the one-disk problem [38]. Using (2.6) and (2.7) and trace-class
properties ofM− 1, M− iDC− 1 and S(1) − 1 one can easily rewrite the right-hand side
of (2.5) as

detS(n)(k) = Det(M(k)− iD(k)C(k))
DetM(k)

=
{ n∏
j=1

(detS(1)(kaj ))
}

DetM(k∗)†

DetM(k)
(2.8)

where now the zeros of the Hankel functionsH(2)
m (kaj ) have to be excluded as well. In

general, the single disks have different sizes. Therefore, they are labelled by the index
j . Note that the analogous formula for the three-dimensional scattering of a point particle
from n non-overlapping balls (of different sizes in general) is structurally completely the
same [38, 41] (except that the negativek-axis is not excluded since the spherical Hankel
functions have no branch cut). In the above calculation the fact that0∗jj ′(l, l

′) = 0jj ′(−l,−l′)
was used [38]. The right-hand side of equation (2.8) is the starting point for the semiclassical
reduction, as every single term is guaranteed to exist. The properties of (2.8) can be
summarized as follows.

(1) The product of then one-disk determinants in (2.8) results from the incoherent
scattering where then-disk problem is treated asn single-disk problems.

(2) The whole expression (2.8) respects unitarity, sinceS(1) is unitary by itself (because
of {H(2)

m (z)}∗ = H(1)
m (z∗)) and since the quotient on the right-hand side of (2.8) is manifestly

unitary.
(3) The determinants on the right-hand side in (2.8) run over the multi-indexL. This is

the proper form to make the symmetry reductions in the multi-space, for example, for the
equilateral three-disk system (with disks of the same size) we have

DetM3-disk = detMA1 detMA2(detME)
2 (2.9)
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and for the two-disk system (with disks of the same size)

DetM2-disk = detMA1 detMA2 detMB1 detMB2 (2.10)

etc. In general, if the disk configuration is characterized by a finite point symmetry group
G, we have

DetMn-disk =
∏
r

(detMDr (k))
dr (2.11)

where the indexr runs over all conjugate classes of the symmetry groupG andDr is
the rth representation of dimensiondr [38]. (See [42] for notation and [43, 44] for the
semiclassical analogue.) A simple check that DetM(k) has been split up correctly is the
power ofH(1)

m (kaj ) Hankel functions (for fixedm with −∞ < m < +∞) appearing in
the denominator of

∏
r (detMDr (k))

dr which has to be the same as in DetM(k), which
in turn has to be the same as in

∏n
j=1(detS(1)(kaj )). Note that on the left-hand side the

determinants are calculated in the multi-space{L}. If the n-disk system is totally symmetric,
i.e. none of the disks are special in size and position, the reduced determinants on the
right-hand side are calculated in the normal (desymmetrized) space{l}, however, now with
respect to the origin of the disk in the fundamental domain and with ranges given by the
corresponding irreducible representations. If some of then-disk are still special in size or
position (e.g. three equal disks in a row [45]), the determinants on the right-hand side refer
to a corresponding symmetry-reduced multi-space. This is the symmetry reduction on the
exact quantum-mechanical level. The symmetry reduction can be most easily shown if one
uses again the trace-class properties ofM− 1≡ A

DetM = exp

{
−
∞∑
N=1

(−1)N

N
Tr [AN ]

}
= exp

{
−
∞∑
N=1

(−1)N

N
Tr [UANU†]

}
= exp

{
−
∞∑
N=1

(−1)N

N
Tr [(UAU†)N ]

}
= exp

{
−
∞∑
N=1

(−1)N

N
Tr [AN

block]

}
whereU is unitary transformation which makesA block-diagonal in a suitable basis spanned
by the complete set{|m; j〉}. These operations are allowed because of the trace-class
property ofA and the boundedness of the unitary matrixU (see the appendix).

As the right-hand side of equation (2.8) splits into a product of one-disk determinants
and the ratio of two mutually complex conjugate genuinen-disk determinants, which are
all well defined individually, the semiclassical reduction can be performed for the one-disk
and the genuine multi-disk determinants separately. In [33] the semiclassical expression
for the determinant of the one-diskS-matrix is constructed in analogous fashion to the
semiclassical constructions of [20]:

detS(1)(ka) ≈ {e−iπN(ka)}2 {
∏∞
`=1[1− e−i2πν̄`(ka)]}2

{∏∞`=1[1− e+i2πν`(ka)]}2 (2.12)

with the creeping term [20, 37]

ν`(ka) = ka + e+iπ/3(ka/6)1/3q` + · · · = ka + iα`(ka)+ · · · (2.13)

ν̄`(ka) = ka + e−iπ/3(ka/6)1/3q` + · · · = ka − i(α`(k
∗a))∗ + · · · = [ν`(k

∗a)]∗ (2.14)

andN(ka) = (πa2k2)/4π + · · · being the leading term in the Weyl approximation for the
staircase function of the wavenumber eigenvalues in the disk interior. From the point of
view of the scattering particle the interior domains of the disks are excluded relatively to the
free evolution without scattering obstacles (see, e.g. [7]), hence the negative sign in front of
the Weyl term. For the same reason, the subleading boundary term has a Neumann structure,
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although the disks themselves obey Dirichlet boundary conditions. Let us abbreviate the
right-hand side of (2.12) for a specified diskj as

detS(1)(kaj )
s.c.−→{e−iπN(kaj )}2 Z̃

(1)
l (k

∗aj )
∗

Z̃
(1)
l (kaj )

Z̃(1)r (k
∗aj )

∗

Z̃
(1)
r (kaj )

(2.15)

whereZ̃(1)l (kaj ) andZ̃(1)r (kaj ) are thediffractional zeta functions (here and in the following
semiclassical zeta functionswith diffractive corrections shall be labelled by a tilde) for
creeping orbits around thej th disk in the left-handed sense and theright-handed sense,
respectively.

The genuine multi-disk determinant DetM(k) (or detMDr (k) in the case of symmetric
disk configurations) is organized according to the cumulant expansion (1.8) which, in fact,
is the defining prescription for the evaluation of the determinant of an infinite matrix under
the trace-class property. Thus, the cumulant arrangement is automatically imposed onto
the semiclassical reduction. Furthermore, the quantum-mechanical cumulants satisfy the
Plemelj–Smithies recursion relation (1.9) and can therefore solely be expressed by the
quantum-mechanical traces TrAm(k). In [33] the semiclassical reduction of the traces, see
equation (1.10), has been derived. If this result is inserted back into the Plemelj–Smithies
recursion formula, the semiclassical equivalent of the exact cumulants arise. These are
nothing but the semiclassical curvatures (1.12), see [8, 9, 21]. Finally, after the curvatures are
summed up according to equation (1.11), it is clear that the the semiclassical reductions of the
determinants in (2.8) or (2.11) are the Gutzwiller–Voros spectral determinants (with creeping
corrections) in the curvature-expansion regularization. In the case where intervening disks
‘block out’ ghost orbits [15, 46], the corresponding orbits have to be pruned, see [33]. In
summary, we have

DetM(k)
s.c.−→ Z̃GV(k)|curv. reg. (2.16)

detMDr (k)
s.c.−→ Z̃Dr (k)|curv. reg. (2.17)

where creeping corrections are included in the semiclassical zeta functions. The
semiclassical limit of the right-hand side of (2.8) is

detS(n)(k) =
{ n∏
j=1

detS(1)(kaj )
}

DetM(k∗)†

DetM(k)

s.c.−→
{ n∏
j=1

(e−iπN(kaj ))2
Z̃
(1)
l (k

∗aj )
∗

Z̃
(1)
l (kaj )

Z̃(1)r (k
∗aj )

∗

Z̃
(1)
r (kaj )

}
Z̃GV(k

∗)
∗

Z̃GV(k)
(2.18)

where we now suppress the qualifier· · · |curv. reg.. For systems which allow for complete
symmetry reductions (i.e. equivalent disks withaj = a ∀j .) the semiclassical reduction
reads

detS(n)(k) = {detS(1)(ka)}n
∏
r{detMDr (k

∗)†}dr∏
r{detMDr (k)}dr

s.c.−→{e−iπN(ka)}2n
{
Z̃
(1)
l (k

∗a)
∗

Z̃
(1)
l (ka)

Z̃(1)r (k
∗a)
∗

Z̃
(1)
r (ka)

}n ∏
r{Z̃Dr (k∗)

∗}dr∏
r{Z̃Dr (k)}dr

(2.19)

in obvious correspondence. (See [43, 44] for the symmetry reductions of the Gutzwiller–
Voros zeta function.) These equations do not only give a relation between exact quantum
mechanics and semiclassics at the poles, but forany value of k in the allowedk region
(e.g. Rek > 0). There is the caveat that the semiclassical limit and the cumulant limit



A link between quantum-mechanical and semiclassical scattering 2165

might not commute in general and that the curvature expansion has a finite domain of
convergence [9, 10, 47].

It should be noted that forbound systems the idea to focus not only on the positions of
the zeros (eigenvalues) of the zeta functions, but also on their analytic structure and their
values taken elsewhere has been studied in [2, 3].

3. Discussion

We have shown that (2.8) is a well defined starting point for the investigation of the
spectral properties of the exact quantum-mechanical scattering of a point particle from a
finite system of non-overlapping disks in two dimensions. The genuine coherent multi-disk
scattering decouples from the incoherent superposition ofn single-disk problems. We have,
furthermore, demonstrated that (2.18) (or, for symmetry-reducible problems, equation (2.19))
closes the gap between the quantum mechanical and the semiclassical description of these
problems. Because the link involves determinants of infinite matrices with trace-class
kernels, the defining cumulant expansion automatically induces the curvature expansion for
the semiclassical spectral function. We have also shown that inn-disk scattering systems
unitarity is preserved on the semiclassical level.

The result of (2.18) is compatible with Berry’s expression for the integrated spectral
density in Sinai’s billiard (aboundn→∞ disk system, see equation (6.11) of [15]) and—
in general—with the Krein–Friedel–Lloyd sums (1.5). However, all the factors in the first
line of the expressions (2.18) and (2.19) are not just of formal nature, but shown to be
finite except at the zeros of the Hankel functions,H(1)

m (ka) andH(2)
m (ka), at the zeros of

the various determinants and on the negative realk-axis, sinceM(k) − 1 and S(1)(k) − 1
are ‘trace-class’ almost everywhere in the complexk-plane.

The semiclassical expressions (second lines of (2.18) and (2.19)) are finite, if the zeta
functions follow the induced curvature expansion and if the limitm → ∞ exists also
semiclassically (the curvature limitm→∞ and the semiclassical limit Rek →∞ do not
have to commute). The curvature regularization is the semiclassical analogue to the well
defined quantum-mechanical cumulant expansion. This justifies the formal manipulations
of [7, 8, 48].

Furthermore, even semiclassically, unitarity is automatically preserved in scattering
problems (without any reliance on re-summation techniques following Berry and Keating
[28] which are necessary and only applicable in bound systems), since

detS(n)(k)
† = 1

detS(n)(k∗)
(3.1)

is valid both quantum mechanically (see the first lines of (2.18) and (2.19)) and
semiclassically (see the second lines of (2.18) and (2.19)). There is the caveat that the
curvature-regulated semiclassical zeta function has a finite domain of convergence defined
by the poles of the dynamical zeta function in the lower complexk-plane [9, 10, 47]. Below
this boundary line the semiclassical zeta function has to be truncated at finite order in the
curvature expansion [1]. Thus, under the stated conditions unitarity is preserved forn-disk
scattering systems on the semiclassical level. On the other hand, unitarity can, therefore,
not be used in scattering problems to gain any constraints on the structure ofZ̃GV as it
could in bound systems, see [28].

To each (quantum-mechanical or semiclassical) pole of detS(n)(k) in the lower complex
k-plane determined by a zero of DetM(k), there belongs a zero of detS(k) in the upper
complexk-plane determined by a zero of DetM(k∗) with the same Rek value, but opposite
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Im k. We have also demonstrated that the zeta functions of the pure one-disk scattering
and the genuine multi-disk scattering decouple, i.e. the one-disk poles do not influence the
position of thegenuinemulti-disk poles. However, DetM(k) does not only possess zeros,
but also poles. The latter exactly cancel the poles of the product of the one-disk determinants,∏n
j=1 detS(1)(kaj ), since both involve the same ‘number’ and ‘power’ ofH(1)

m (kaj ) Hankel

functions in the denominator. The same is true for the poles of DetM(k∗)† and thezeros
of
∏n
j=1 detS(1)(kaj ), since in this case the ‘number’ ofH(2)

m (kaj ) Hankel functions in the
denominator of the former and the numerator of the latter is the same—see also Berry’s
discussion on the same cancellation in the integrated spectral density of Sinai’s billiard,
equation (6.10) of [15]. Semiclassically, this cancellation corresponds to a removal of the
additional creeping contributions of topological length zero, 1/(1− exp(i2πν`)), from Z̃GV

by the one-disk diffractive zeta functions,̃Z(1)l and Z̃(1)r . The orbits of topological length
zero result from the geometrical sums over additional creepings around the single disks,∑∞

nw=0(exp(i2πν`))nw (see [37]). They multiply the ordinary creeping paths of non-zero
topological length. Their cancellation is very important in situations where the disks nearly
touch, since in such geometries the full circulations of creeping orbits around any of the
touching disks should clearly be suppressed, as it now is. Therefore, it is important to keep a
consistent account of the diffractive contributions in the semiclassical reduction. Because of
the decoupling of the one-disk from the multi-disk determinants, a direct clear comparison
of the quantum mechanical cluster phase shifts of DetM(k) with the semiclassical ones of
the Gutzwiller–Voros zeta functionZGV(k) is possible. Without the decoupling the cluster
phase shifts would be only small modulations on the dominating single-disk phase shifts
(see [1, 33]).

In the standard cumulant expansion (see (1.8) with the Plemelj–Smithies recursion
formula (1.9)) as well as in the curvature expansion (see (1.11) with (1.12)) there are large
cancellations involved which become more and more dramatic the higher the cumulant order
is. Let us order—without loss of generality—the eigenvalues of the trace-class operatorA
as follows:

|λ1| > |λ2| > · · · > |λi−1| > |λi | > |λi+1| > · · · .
This is always possible because the sum over the moduli of the eigenvalues is finite for
trace-class operators. Then, in the standard (Plemelj–Smithies) cumulant evaluation of the
determinant there are cancellations of big numbers, for example, at thelth cumulant order
(l > 3) all the intrinsically large ‘numbers’λl1, λ

l−1
1 λ2, . . . , λ

l−2
1 λ2λ3, . . . and many more

have to cancel out, such that the right-hand side of

det(1+ zA) =
∞∑
l=0

zl
∑

j1<···<jl
λj1(A) · · · λjl (A). (3.2)

is finally left over. Algebraically, the large cancellations in the exact quantum-mechanical
calculation do not matter. However, if the determinant is calculated numerically, large
cancellations might spoil the result or even the convergence. Moreover, if further
approximations are made as, for example, the transition from the exact cumulant to
the semiclassical curvature expansion, these large cancellations might be potentially
dangerous. Under such circumstances the underlying (algebraic) absolute convergence of
the quantum-mechanical cumulant expansion cannot simply induce the convergence of the
semiclassical curvature expansion, sincelarge semiclassical ‘errors’ can completely change
the convergence properties.

In summary, the non-overlapping disconnectedn-disk systems have the great virtue
that—although classically completely hyperbolic and for some systems even chaotic—they
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are quantum-mechanicallyand semiclassically ‘self-regulating’ and also ‘self-unitarizing’
and still simple enough that the semiclassics can be studied directly, independently of the
Gutzwiller formalism, and then compared with the latter.
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Appendix A. Existence of then-disk S-matrix and its determinant

Gaspard and Rice [4] derived in a formal way an expression for theS-matrix for the three-
disk repeller. We have used the same techniques in generalizing this result to repellers
consisting ofn disks ofdifferent radii [33, 38],

S(n) = 1− iT T = Bj · Dj (A1)

Cj = Bj ′ ·Mj ′j (A2)

S(n) = 1− iCj · (M−1)jj
′ · Dj ′ . (A3)

S(n) denotes theS-matrix for then-disk repeller andBj parametrizes the gradient of the
wavefunction on the boundary of the diskj . The matricesC andD describe the coupling of
the incoming and outgoing scattering waves, respectively, to the diskj and the matrixM is
the genuine multi-disk ‘scattering’ matrix with eliminated single-disk properties.C, D and
M are given by equations (2.2)–(2.4), respectively. The derivations of the expression for
S-matrix (A3) and of its determinant (see section 2) are of purely formal character as all the
matrices involved are of infinite size. Here, we will show that the performed operations are
all well defined. For this purpose, the trace-class (J1) and Hilbert–Schmidt (J2) operators
will play a central role.

Trace-class and determinants of infinite matrices.We will briefly summarize the definitions
and most important properties for trace-class and Hilbert–Schmidt matrices and operators,
and for determinants over infinite-dimensional matrices, [39, 49–52] should be consulted for
details and proofs.

An operatorA is calledtrace class, A ∈ J1, if and only if, for every orthonormal basis,
{φn} ∑

n

|〈φn,Aφn〉| <∞. (A4)

An operatorA is called Hilbert–Schmidt, A ∈ J2, if and only if, for every orthonormal
basis,{φn} ∑

n

‖Aφn‖2 <∞. (A5)

The most important properties of the trace and Hilbert–Schmidt classes can be summarized
as (see [39, 50]): (a)J1 andJ2 are∗ideals., i.e. they are vector spaces closed under scalar
multiplication, sums, adjoints and multiplication with bounded operators; (b)A ∈ J1 if and
only if A = BC with B,C ∈ J2; (c) for any operatorA, we haveA ∈ J2 if

∑
n ‖Aφn‖2 <∞
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for a single basis; (d) for any operatorA > 0, we haveA ∈ J1 if
∑

n |〈φn,Aφn〉| <∞ for
a single basis.

Let A ∈ J1, then the determinant det(1+ zA) exists [39, 49–52], it is an entire and
analytic function ofz and it can be expressed by thePlemelj–Smithies formula:define
αm(A) for A ∈ J1 by

det(1+ zA) =
∞∑
m=0

zm
αm(A)
m!

. (A6)

Thenαm(A) is given by them×m determinant

αm(A) =

∣∣∣∣∣∣∣∣∣∣∣

Tr (A) m− 1 0 · · · 0
Tr (A2) Tr (A) m− 2 · · · 0
Tr (A3) Tr (A2) Tr (A) · · · 0
...

...
...

...
...

Tr (Am) Tr (A(m−1)) Tr (A(m−2)) · · · Tr (A)

∣∣∣∣∣∣∣∣∣∣∣
(A7)

with the understanding thatα0(A) ≡ 1 and α1(A) ≡ Tr (A). Thus the cumulants
cm(A) ≡ αm(A)/m! (with c0(A) ≡ 1) satisfy the recursion relation

cm(A) = 1

m

m∑
k=1

(−1)k+1cm−k(A)Tr (Ak) for m > 1.

The most important properties of these determinants are: (i) ifA,B ∈ J1, then
det(1+A) det(1+B) = det(1+A+B+AB) = det[(1+A)(1+B)] = det[(1+B)(1+A)];
(ii) if A ∈ J1 andU unitary, then det(U†(1+A)U) = det(1+U†AU) = det(1+A); (iii) if
A ∈ J1, then(1+ A) is invertible if and only if det(1+ A) 6= 0; (iv) for any A ∈ J1,

det(1+ A) =
N(A)∏
j=1

[1+ λj (A)] (A8)

where here and in the following{λj (A)}N(A)j=1 are the eigenvalues ofA counted with algebraic
multiplicity (N(A) can be infinite).

Now we can return to the actual problem. TheS(n)-matrix is given by (A1). The
T-matrix is trace-class on the positive realk-axis (k > 0), as it is the product of the
matricesDj and Bj which will turn out to be trace-class or, respectively, bounded there
(see [39, 40] for the definitions). Again formally, we have used thatCj = Bj ′Mj ′j implies
the relationBj ′ = Cj (M−1)jj

′
. Thus, the existence ofM−1(k) has to be shown, too—except

at isolated poles in the lower complexk-plane below the realk-axis and on the branch cut on
the negative realk-axis which results from the branch cut of the defining Hankel functions.
As we will prove later,M(k) − 1 is trace-class, except at the above-mentioned points in
the k-plane. Therefore, using property (iii), we only have to show that DetM(k) 6= 0 in
order to guarantee the existence ofM−1(k). At the same time,M−1(k) will be proven to
be bounded as all its eigenvalues and the product of its eigenvalues are then finite. The
existence of these eigenvalues follows from the trace-class property ofM(k) which together
with DetM(k) 6= 0 guarantees the finiteness of the eigenvalues and their product [39, 49].

We have normalizedM in such a way that we simply haveB = C for the scattering
from a single disk. Note that the structure of the matrixCj does not depend on whether the
point particle scatters only from a single disk or fromn disks. The functional form (2.2)
shows thatC cannot have poles on the real positivek-axis (k > 0) in agreement with the
structure of theS(1)-matrix (see equation (2.7)). If the origin of the coordinate system is
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placed at the centre of the disk, the matrixS(1) is diagonal. In the same basisC becomes
diagonal. One can easily see thatC has no zero eigenvalue on the positive realk-axis and
that it will be trace-class. So neitherC nor the one-disk (or for that purpose then-disk)
S-matrix can possess poles or zeros on the real positivek-axis. The statement aboutS(n)

follows simply from the unitarity of theS-matrix which can be checked easily. The fact that
| detS(n)(k)| = 1 on the positive realk-axis cannot be used to disprove that DetM(k) could
be zero there (see equation (2.8)). However, if DetM(k) were zero there, this ‘would-be’
pole must cancel out ofS(n)(k). Looking at formula (A3), this pole has to cancel out against
a zero fromC or D where both matrices are already fixed on the one-disk level. Now, it
follows from (A8) thatM(k) (provided thatM−1 has been proven trace-class) has only one
chance to make trouble on the positive realk-axis, namely, if at least one of its eigenvalues
(whose existence is guaranteed) becomes zero. On the other hand,M has still to satisfy
Cj = Bj ′Mj ′j . Comparing the left- and right-hand sides of|Cj

mm(k)| = |Bj ′
mlM

j ′j
lm | in the

eigenbasis ofM, and having in mind thatCj (k) cannot have zero eigenvalue fork > 0, one
finds a contradiction if the corresponding eigenvalue ofM(k) were zero. HenceM(k) is
invertible on the real positivek-axis, provided, as mentioned now several times,M(k)− 1
is trace-class. From the existence of the inverse relationBj ′ = Cj (M−1)jj

′
and the to be

shown trace-class property ofCj and the boundedness of(M−1)jj
′
, the boundedness ofBj

follows and therefore the trace-class property of then-disk T-matrix, T(n)(k) results, except
at the above excludedk-values.

It is left for us to prove:
(a) M(k)− 1 ∈ J1 for all k, except at the poles ofH(1)

m (kaj ) and fork 6 0;
(b) Cj (k),Dj (k) ∈ J1 with the exception of the samek-values mentioned in (a);
(c) T(1)(kaj ) ∈ J1 (again with the same exceptions as in (a)) whereT(1) is theT-matrix

of the one-disk problem;
(d) M−1(k) does not only exist, but is bounded.
Under these conditions all the manipulations of section 2 (equations (2.5) and (2.8)) are

justified andS(n), as in (2.1), and detS(n), as in (2.8), are shown to exist.

Proof of T(1)(kaj )) ∈ J1 . The S-matrix for thej th disk is given by

S(1)ml (kaj ) = −
H
(2)
l (kaj )

H
(1)
l (kaj )

δml. (A9)

Thus V ≡ −iT(1)(kaj ) = S(1)(kaj ) − 1 is diagonal. Hence, we can writeV = U|V| where
U is diagonal and unitary, and therefore bounded. What is left to prove is that|V| ∈ J1.
We just have to show in a special orthonormal basis (the eigenbasis) that

+∞∑
l=−∞

|V|ll =
+∞∑
l=−∞

2

∣∣∣∣∣ Jl(kaj )H
(1)
l (kaj )

∣∣∣∣∣ <∞ (A10)

since|V| > 0 by definition (see property (d)). The convergence of this series can be shown
easily using the asymptotic formulae for Bessel and Hankel functions for large orders,
ν →∞, ν real:

Jν(ka) ∼ 1√
2πν

(
eka

2ν

)ν
H (1)
ν (ka) ∼ −i

√
2

πν

(
eka

2ν

)−ν
(A11)

(see, e.g., [53]). From this equation follows the mathematical justification for the impact
parameter (or angular momentum) truncation in the semiclassical resolution of thesingle
disks,|m| 6 (e/2)ka. This limit should not be confused with the truncation in the curvature
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order resulting from the finite resolution of the repelling set of then-disk problem, see [1].
Under these asymptotic formulae and the summation of the resulting geometrical series, the
trace-class property of|V| ∈ J1 andS(1)−1 ∈ J1 follows immediately. That in turn means
that detS(1)(kaj ) exists and also that the product

∏n
j=1 detS(1)(kaj ) <∞ if n is finite (see

[39, 49]). Note that the limitn→∞ does not exist in general.

Proof of A(k) ≡ M(k) − 1 ∈ J1. The determinant of the characteristic matrixM(k) is
defined, ifA(k) ∈ J1. In order to show this, we splitA into the product of two operators
which—as we will show—are both Hilbert–Schmidt. Then the product is trace-class (see
property (b)).

Let, therefore,A = E · F with A = M − 1 as given in (2.4). In order to simplify the
decomposition ofA, we choose one of the factors, namely,F, as a diagonal matrix. Let

Fjj
′

ll′ =
√
H
(1)
2l (kαaj )

H
(1)
l (kaj )

δjj
′
δll′ α > 2. (A12)

This ansatz already excludes the zeros of the Hankel functionsH
(1)
l (kaj ) and also the

negative realk-axis (the branch cut of the Hankel functions fork 6 0) from our final proof
of A(k) ∈ J1. First, we have to show that‖F‖2 =∑j

∑
l(F
†F)jjll <∞. We start with

‖F‖2 6
n∑
j=1

2
∞∑
l=0

|H(1)
2l (kαaj )|
|H(1)

l (kaj )|2
≡

n∑
j=1

2
∞∑
l=0

al . (A13)

This expression restricts our proof ton-disk configurations withn finite. Using the
asymptotic expressions for the Bessel and Hankel functions of large orders (A11) (see, e.g.,
[53]), it is easy to prove the absolute convergence of

∑
l al in the caseα > 2. Therefore,

‖F‖2 <∞ and because of property (c) we getF ∈ J2.
We now investigate the second factorE. We have to show the convergence of

‖E‖2 =
n∑

j,j ′=1
j 6=j ′

(
aj

aj ′

)2 ∞∑
l,l′=−∞

all′ all′ =
|Jl(kaj )|2|H(1)

l−l′(kRjj ′)|2
|H(1)

2l′ (kαaj ′)|
(A14)

in order to prove that alsoE ∈ J2. Using the same techniques as before, the convergence of∑
l all′ for (1+ ε)aj < Rjj ′ , ε > 0, as well as the convergence of

∑
l′ all′ for αaj ′ < 2Rjj ′ ,

α > 2, can be shown. We must of course show the convergence of
∑

l,l′ all′ for the case
l, l′ → ∞ as well. Under the asymptotic behaviour of the Bessel and Hankel functions of
large order (A11), it is easy to see that it suffices to prove the convergence of

∑∞
l,l′=0 bll′ ,

where

bll′ = (l + l′)2(l+l′)
l2l l′2l′

(
aj

Rjj ′

)2l (
α

2

aj ′

Rjj ′

)2l′

. (A15)

In order to show the convergence of the double sum, we introduce new summation indices
(M,m), namely 2M := l+ l′ andm := l− l′. Using first Stirling’s formula for large powers
M and then applying the binomial formula in order to perform the summation overm, the
convergence of

∑∞
l,l′=0 bll′ can be shown, provided thataj + (α/2)aj ′ < Rjj ′ . Under this

condition the operatorE belongs to the class of Hilbert–Schmidt operators (J2).
In summary, this meansE(k) · F(k) = A(k) ∈ J1 for thosen-disk configurations

for which the number of disks is finite and the disks neither overlap nor touch, and for
those values ofk which lie neither on the zeros of the Hankel functionsH(1)

m (kaj ) nor on
the negative realk-axis (k 6 0). The zeros of the Hankel functionsH(2)

m (k∗aj ) are then
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automatically excluded, too. The zeros of the Hankel functionsH(1)
m (kαaj ) in the definition

of E are cancelled by the corresponding zeros of the same Hankel functions in the definition
of F and they can therefore be removed, i.e. a slight change inα re-adjusts the positions
of the zeros in the complexk-plane such that they can always be moved to non-dangerous
places.

Proof ofCj ,Dj ∈ J1. The expressions forDj andCj can be found in (2.3) and (2.2). Both
matrices contain—for a fixed value ofj—only the information of the single-disk scattering.
As in the proof ofT(1) ∈ J1, we go to the eigenbasis ofS(1). In that basis both matricesDj

andCj become diagonal. Using the same techniques as in the proof ofT(1) ∈ J1, we can
show thatCj andDj are trace-class. In summary, we haveDj ∈ J1 for all k as the Bessel
functions which define that matrix possess neither poles nor branch cuts. The matrixCj is
trace-class for almost everyk, except at the zeros of the Hankel functionsH(1)

m (kaj ) and
the branch cut of these Hankel functions on the negative realk-axis (k 6 0).

Existence and boundedness ofM−1(k). DetM(k) exists almost everywhere, sinceM(k)−
1 ∈ J1, except at the zeros ofH(1)

m (kaj ) and on the negative realk-axis (k 6 0). Modulo
these points,M(k) is analytic. Hence, the points of the complexk-plane with DetM(k) = 0
are isolated. Thus, almost everywhereM(k) can be diagonalized and the product of the
eigenvalues weighted by their degeneracies is finite and non-zero. Hence, where DetM(k) is
defined and non-zero,M−1(k) exists, it can be diagonalized and the product of its eigenvalues
is finite. In summary,M−1(k) is bounded and DetM−1(k) exists almost everywhere in the
complexk-plane.
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